
See Vim Run.
Run, Vim, Run!

St. Louis Unix Users Group 
Bill Odom • @wnodom • bill@billodom.com 

Vim is not a shell or an Operating
System. You will not be able to
run a shell inside Vim or use it to
control a debugger. This should
work the other way around: Use
Vim as a component from a shell
or in an IDE.

!
— :help design-not

This isn’t as true as it once was. Vim
has grown to include many features
that were once separate commands.
There’s a slide near the end that
mentions several of them.

Unlike Emacs,
Vim does not
attempt to include
everything but the
kitchen sink, but
some people say
that you can clean
one with it. ;-)

!
— :help design-not

It wouldn’t be right to mention
Emacs in a Vim presentation without
including a photo of Saint IGNUcius.
<https://stallman.org/saint.html>

Duh

The easy stuff you’re likely to know
already if you’ve been using Vim for
even a short period of time.

Duh

Suspend:
 Control+Z!
Resume:
 fg

This mostly applies to terminal
versions of Vim. In GUI Vim, Control
+Z typically does whatever
`:suspend` does, unless it’s been
mapped to something like undo.

Duh

Open a shell:
 :shell!
Return to Vim:
 exit

`:shell` is often abbreviated as
`:sh`!
Check the `shell` setting to see
what command Vim uses to start a
shell: `set shell?`!
Lots of other settings affect starting
a shell (and therefore running an
external command): `help 'shell'`!

Semi-Duh

These are a little more complicated,
but still pretty well-known.

Semi-Duh

Run a command:
 :!ls -lA

Just runs a command, without
piping anything to it, and without
replacing anything in the buffer.

Semi-Duh

Run previous command again
 :!!!
Run previous with more parameters:
 :!! *.log

Not So Duh

Even experienced Vim users might
be surprised by some of these.

Not So Duh

Run a command and insert its output:
 :r!ls -lA

You can also use `:r` to just read a
file into the buffer. You don’t have
to run a command.!
Some people like to include a space
between the r and the !, but it’s not
required (but see important note for
`:w !…` later).!
This works just as well with a
pipeline.

Not So Duh

Run command with current saved file:
 :!wc %

The `%` expands to the filename
associated with the current buffer.!
See `:help cmdline-special` for
several other special characters, and
`:help filename-modifiers` for all
the stuff you can do to them.

Not So Duh

Pipe current buffer to a command:
 :w !wc

Note the space — leaving out the
space between the w and the bang
doesn’t work the same way.!
The buffer doesn’t have to be saved
to disk for this to work. In other
words, the contents of the buffer
and the actual file on disk (if there is
one) aren’t necessarily the same.

Not So Duh

Filter motion through command:
 !}tr aet 437

Isn’t that lovely? This filters text
from the current line to the end of
the current paragraph through the
`tr` command, converting a, e, and
t to 4, 3, and 7, respectively.

Not So Duh

Filter motion through command:
 !aptr aet 437

`!` also works with text objects, by
moving the cursor to the beginning
of the object, then specifying a
range.!
The slide is kind of confusing
because `!aptr` sort of looks like
you’re running a command called
`aptr`. It’s actually `!ap` (“filter a
paragraph through the following
command”) followed by the `tr`
command itself. It makes more
sense as you’re using it interactively.

Not So Duh

Run a command “programmatically”:
 :call system('open -a "Calculator.app"')

This isn’t really intended for
interactive use, but is very useful for
scripting.

Examples!

Example

Make a backup copy of the current file:
 :!cp % %:r.bak

An example of using the “root”
modifier with `%` — see`:help
filename-modifiers` for more.!
Be sure to quote or escape filenames
that contain spaces or other special
characters. If you need to do
something like this in a script,
consider using `system()` instead.

Example

Insert a calendar:
 :r!cal 1970

Example

Add line numbers, starting at “22”:
 :%!nl -v 22

This is an example of using `%` as a
range, *not* as the name of the
current file. Similar concepts, but
not the same thing. Be sure to
understand the differences.!
You can, of course, number lines in
Vim itself with a little scripting, but
this is quick and easy, especially if
you already know how to use `nl`.

Example

Get a list of text files, turn them into
commands, then run the commands:
 :r! ls *.txt  
 :%s/\(.*\)\.txt/mv & \1.old  
 :w !sh

Note the use of `sh` as a filter.!
Again, be careful about escaping /
quoting filenames where necessary.

Example

Load a manpage into the current buffer
as plain text without control characters:
 :r!man cowthink | col -bx

Conversion technique from
<https://kb.iu.edu/d/acjn>.!
Note how the `:r!…` technique
works just as well with a pipeline as
with a single command.!
(This example assumes you have the
cowsay package installed, which
includes `cowthink`.)

Example

Reverse all lines to the end of the file:
 !Grev

Or, you know, you could do this…!
 :%s/\(\<.\{-}\>\)/
\=join(reverse(split(submatch(1), '.
\zs')), ‘')/g

Example

Make a banner:
 :r!banner -w 80 Hi\!

Note that `!` is escaped to keep it
from being expanded to the text of
the previous command.

Example

Dino-fy the current line:
 !!cowsay -f stegosaurus.cow

`!!` filters the current line through
the specified command.!
(This example assumes you have the
cowsay package installed.)!

Example

Write to a file you should’ve opened with
sudo:
 :w !sudo tee %

This is a classic, but now you know
how it works. :)

Example

Insert output of `wc` for current file at top
of buffer:
 :call append(0,  
 \ systemlist('wc ' .  
 \ shellescape( 
 \ expand('%'))))

This is more like what you’d use in a
script or plugin.!
Broken across multiple lines, just to
make it (slightly) clearer.!!

Example

Open a new tab and run a command
against the “alternate” file:
 :tabnew | :r!wc #

Sometimes you want to run a
command against the current file,
but in a new tab. As soon as you
open a new tab, however, the
“current” file isn’t current anymore
— it’s become the “alternate” file.
The `#` command-line special
character lets you access the
alternate file.

Example

Load the source of a web page into the
current buffer:
 :r!curl www.billodom.com

Nothing special about `curl`; could
also use wget, lynx, etc.!

Example

Load passwd file & manipulate with cut:
 :r /etc/passwd  
 :%!cut -d : -f 1,7!

Or do both at once:!
 :r!cut -d : -f 1,7 /etc/passwd!

Think Inside the Box
grep
sort
rot13
par / fmt
hostname

date / time
uniq
expand /
unexpand
...and many more

All of these commands have
equivalents built in to Vim.!
Vim includes a lot more functionality
than the original vi, and therefore
doesn’t have to depend on as many
external commands as it once did.
While there’s nothing wrong with
using external commands instead of
the built-in capabilities, it’s often
faster and simpler to use the stuff
that’s baked into Vim. Take a look at
`:h functions` to get an idea of
what’s available.

*prg

keywordprg!

equalprg!

formatprg!

grepprg!

makeprg

Vim can run commands for you
behind the scenes, often as a
fallback. These are some of the
settings that control the commands
that Vim will run.

Help Topics

:help design-not!

:help :shell!

:help :!cmd!

:help filter!

:help :write_c

As always, the Vim help is very
comprehensive. These are just a few
of the relevant topics.

Help Topics

:help system()!

:help systemlist()!

:help cmdline-special!

:help filename-modifiers!

:help backtick-expansion!

:help function-list

As always, the Vim help is very
comprehensive. These are just a few
of the relevant topics.

?
Any questions or comments?

Thanks!

